

Hydro Place. 500 Columbus Drive. P.O. Box 12400. St. John's. NL Canada A1B 4K7 t. 709.737.1400 f. 709.737.1800 www.nlh.nl.ca

April 18, 2017

Board of Commissioners of Public Utilities Prince Charles Building 120 Torbay Road, P.O. Box 21040 St. John's, NL A1A 5B2

Attention: Ms. Cheryl Blundon Director of Corporate Services & Board Secretary

Dear Ms. Blundon:

Re: An Application by Newfoundland and Labrador Hydro (Hydro) for approval of Reliability Improvements at the Holyrood Thermal Generating Station.

Please find enclosed the original and 9 copies of the above-noted Application, plus supporting affidavit, project proposal, and draft order.

The Holyrood Thermal Generating Station (Holyrood) is an essential part of the Island Interconnected System and produces up to 40 percent of the Island's annual energy requirements. Hydro requires that Holyrood continue to operate reliably to provide capacity and energy to Island Interconnected customers until after interconnection to the North American grid. Units 1 and 2 have a maximum continuous rating of 170 MW and are currently de-rated to 135 MW due to boiler airflow losses around the air heaters and accumulated boiler soot and ash from heavy fuel oil combustion. Air leakage on the boiler air heaters and on expansion joints is a significant contributor to the current de-rating on Units 1 and 2. Unit 3 has a maximum continuous rating of 150 MW. While not de-rated, the Unit 3 boiler air heaters have reached the end of life due to erosion and corrosion and require replacement. Further, a number of critical pieces of equipment at Holyrood have reached, or are reaching, the end of their useful life and are at risk for failure.

Hydro is proposing to improve the reliability at Holyrood by refurbishing and replacing critical systems and equipment that are necessary for the safe and relation operation of the plant. This includes:

- a. Boiler air flow and heat transfer equipment refurbishments and replacements including boiler air heaters and expansion joints;
- b. Piping, valves, and heat tracing replacements related to boiler feed water, steam, and cooling water systems; and
- c. Turbine and generator lubrication and control system replacements including DC lube oil, pump motor starters, and speed probes and cables.

Ms. C. Blundon Public Utilities Board

Completing this work will reduce the risk of unplanned equipment failures, thereby improving plant availability and unit capacity until interconnection.

Therefore, Hydro is proposing to proceed with reliability improvements, including the refurbishment or replacement of the boiler heat transfer equipment, air flow equipment, and other system equipment that are at the end of life, in order to ensure the reliable operation of Holyrood. This work will occur concurrently with the planned annual maintenance outage schedules for the units in 2017. The estimated capital cost of this project is \$2,610,000.

Should you have any questions, please contact the undersigned.

Yours truly,

Newfoundland & Labrador Hydro

ell Irace

Tracey L/Pennell Senior Counsel, Regulatory

vala one

TLP/Ib

cc: Gerard Hayes – Newfoundland Power Paul Coxworthy – Stewart McKelvey Stirling Scales Sheryl Nisenbaum – Praxair Canada Inc.

ecc: Larry Bartlett – Teck Resources Limited

Dennis Browne, Q.C. – Consumer Advocate Thomas J. O'Reilly, Q.C. – Cox & Palmer IN THE MATTER OF the Electrical Power Control Act, RSNL 1994, Chapter E-5.1 (the EPCA) and the Public Utilities Act, RSNL 1990, Chapter P-47 (the Act), and regulations thereunder;

AND IN THE MATTER OF an Application by Newfoundland and Labrador Hydro for approval to undertake Reliability Improvements at the Holyrood Thermal Generating Station pursuant to Subsection 41(3) of the Act.

TO: The Board of Commissioners of Public Utilities (the Board)

THE APPLICATION OF NEWFOUNDLAND AND LABRADOR HYDRO (Hydro) STATES THAT:

- 1. Hydro is a corporation continued and existing under the *Hydro Corporation Act, 2007*, is a public utility within the meaning of the *Act*, and is subject to the provisions of the *Electrical Power Control Act, 1994*.
- 2. Hydro is the primary generator of electricity in Newfoundland and Labrador. As part of its generating assets, Hydro owns and operates the Holyrood Thermal Generating Station (Holyrood), which has three generating units with a combined generating capacity of 490 MW. Holyrood is an essential part of the Island Interconnected System and produces up to 40 percent of the Island's annual energy requirements. Hydro requires that Holyrood continue to operate reliably to provide capacity and energy to Island Interconnected customers until after interconnection to the North American grid.

- 3. Units 1 and 2 have a maximum continuous rating of 170 MW and are currently de-rated to 135 MW due to boiler airflow losses around the air heaters and accumulated boiler soot and ash from heavy fuel oil combustion. Air leakage on the boiler air heaters and on expansion joints is a significant contributor to the current de-rating on Units 1 and 2. Unit 3 has a maximum continuous rating of 150 MW. While not de-rated, the Unit 3 boiler air heaters have reached the end of life due to erosion and corrosion and require replacement. Further, a number of critical pieces of equipment at Holyrood have reached, or are reaching, the end of their useful life and are at risk for failure.
- 4. Hydro is proposing to improve the reliability at Holyrood by refurbishing and replacing critical systems and equipment that are necessary for the safe and relation operation of the plant. This includes:
 - a. Boiler air flow and heat transfer equipment refurbishments and replacements including boiler air heaters and expansion joints;
 - Piping, valves, and heat tracing replacements related to boiler feed water, steam, and cooling water systems; and
 - c. Turbine and generator lubrication and control system replacements including DC lube oil, pump motor starters, and speed probes and cables.

Completing this work will reduce the risk of unplanned equipment failures, thereby improving plant availability and unit capacity until interconnection.

2

- 5. Hydro is recommending the refurbishment or replacement of the boiler heat transfer equipment, air flow equipment, and other system equipment that are at the end of life, all which is necessary to ensure the reliable operation of Holyrood. This work will occur concurrently with the planned annual maintenance outage schedules for the units in 2017.
- 6. The estimated capital cost of the project is \$2,610,000. The scope of work for this project is set out in the engineering report attached to the Application.
- 7. Hydro submits that the proposed capital expenditure is necessary to ensure that Hydro can continue to provide service which is safe and adequate and just and reasonable as required by Section 37 of the *Act*.
- 8. Therefore, Hydro makes Application that the Board make an Order pursuant to section 41(3) of the *Act* approving the capital expenditure of approximately \$2,610,000 for reliability improvements at the Holyrood Thermal Generating Station, including the refurbishment or replacement of the boiler heat transfer equipment, air flow equipment, and other system components that are at the end of life, as more particularly described in this Application and in the attached project description and justification document.

DATED at St. John's in the Province of Newfoundland and Labrador this ______day of April 2017.

0 In Traces

Tracey L. Pennell Counsel for the Applicant Newfoundland and Labrador Hydro 500 Columbus Drive P.O. Box 12400 St. John's, NL A1B 4K7 Telephone: (709) 778-6671 Facsimile: (709) 737-1782

AND DOL	Electrical
SHOPPEON PEGA	Mechanical
New Linder and Linder	Civil
TODE COLLINS A	Protection & Control
April 17,2017 5	Transmission & Distribution
COLNDLAND & LAUR	Telecontrol
	System Planning

2017 Reliability Improvements

Holyrood Thermal Generating Station

April 17, 2017

A Report to the Board of Commissioners of Public Utilities

1 Summary

2 This Supplemental Capital Budget Application is requesting the approval of a project to 3 improve reliability and the availability of the capacity of the Holyrood Thermal Generating 4 Station (Holyrood). This one year project includes the refurbishment and replacement of 5 critical systems and equipment that are necessary for safe and reliable operation. The 6 project scope includes: 7 8 1. Boiler air flow and heat transfer equipment refurbishments and replacements 9 including boiler air heaters and expansion joints; 2. Piping, valves, and heat tracing replacements related to boiler feed water, steam, 10 11 and cooling water systems; and 12 3. Turbine and generator lubrication and control system replacements including DC 13 lube oil, pump motor starters, and speed probes and cables. 14 15 The reliability improvements are primarily a replacement of end-of-life equipment as well as 16 equipment refurbishments that are necessary to ensure reliability of Holyrood to 2021. The 17 reliability improvements included in this project were identified during planned inspections 18 and assessments as part of the 2016 annual maintenance outages, as well as during the 19 2016/2017 winter operating season, and were too late for inclusion into the 2017 Capital 20 Budget Application. Hydro requires that Holyrood continue to operate reliably to provide 21 capacity and energy to Island Interconnected customers until after interconnection to the 22 North American grid. To ensure the reliable operation of the facility, the proposed reliability 23 improvement work is required. 24

25 The estimated cost of this project is \$2,610,000.

Table of Contents

Summaryi
1.0 Introduction
2.0 Project Description
3.0 Justification 2
3.1 Boiler Air Heater Refurbishment and Expansion Joint Replacement 2
3.2 Equipment Replacement
3.3 Existing System
3.3.1 Boiler Air Heaters
3.3.2 Expansion Joints
3.4 Operating Experience
3.4.1 Boiler Air Heaters and Expansion Joints15
3.4.2 Equipment Replacement 16
3.5 Reliability Performance16
3.6 Legislative or Regulatory Requirements17
3.7 Safety Performance17
3.8 Environmental Performance18
3.9 Vendor Recommendations 18
3.10Maintenance or Support Arrangements18
3.11Maintenance History 19
3.12Anticipated Useful Life 20
4.0 Development of Alternatives
5.0 Execution
5.1 Budget Estimate
5.2 Project Schedule
6.0 Conclusion

Appendices

Appendix A – Howden Inspection Report (Unit 1 Preheater)

Appendix B – Howden Inspection Report (Unit 2 Preheater)

Table of Figures

Figure 1: Boiler Air Heater Excessive Seal Clearance	3
Figure 2: Boiler Ductwork Expansion Joint	4
Figure 3: Boiler Ductwork Expansion Joint	5
Figure 4: Boiler Ductwork Expansion Joint	5
Figure 5: Unit 3 Boiler Air Heater Rotor	6
Figure 6: Deteriorated Unit 3 Air Heater Baskets	7
Figure 7: Deteriorated Unit 3 Air Heater Baskets	7
Figure 8: Leaking Valve	9
Figure 9: Condenser Cooling Water Piping	10
Figure 10: Steam Heat Tracing Failure	11
Figure 11: Turbine Speed Control System	12
Figure 12: Boiler Air Heater	13
Figure 13: Boiler Ductwork Expansion Joint (1)	15
Figure 14: Boiler Ductwork Expansion Joint (2)	15

List of Tables

Table 1: Holyrood Thermal Generation Unit Performance	17
Table 2: Unit 1 Boiler Air Heaters and Expansion Joints Maintenance History	19
Table 3: Unit 2 Boiler Air Heaters and Expansion Joint Maintenance History	19
Table 4: Unit 3 Boiler Air Heaters Maintenance History	20
Table 5: Project Budget Estimate	21
Table 6: Project Milestones	22

1 **1.0 Introduction**

In this Application, Newfoundland and Labrador Hydro (Hydro) is proposing a project to
improve reliability and availability of the generating capacity of the Holyrood Thermal
Generating Station (Holyrood). This project has two purposes, refurbishment of boiler heat
transfer equipment, and replacement of various system components that are at end of life.

7 Hydro proposes to refurbish or replace boiler heat transfer and air flow equipment necessary 8 for reliable operation and restoration of the capacity of Holyrood. This includes refurbishment 9 of boiler air heaters and replacement of expansion joints on the boiler air delivery system that 10 are at the end of life. Units 1 and 2 have a maximum continuous rating of 170 MW and are currently de-rated to 135 MW due to boiler airflow losses around the air heaters and 11 12 accumulated boiler soot and ash from heavy fuel oil combustion. Air leakage on the boiler air 13 heaters and on expansion joints is a significant contributor to the current de-rating on Units 1 and 2. The Unit 1 and Unit 2 boiler air heaters will be refurbished to reduce air leakage during 14 15 operation. Expansion joints on the combustion air ductwork to the boiler that are at the end of 16 life will also be replaced. It is anticipated that completion of this work will increase the current 17 de-rated capacity of Units 1 and 2 by 10 MW per unit. In addition, the boiler air heaters serving 18 Unit 3 will also be refurbished to improve reliability. Boiler fouling, another contributor to unit 19 de-rating, is already scheduled to be addressed this summer as part of the 2017 boiler 20 maintenance work. Hydro also proposes replacing various system components that are at end 21 of life, including piping, valves, and turbine generator lubrication and controls systems. 22

The reliability improvements included in this project were identified too late for inclusion into
the 2017 Capital budget application, either because of the timing of the annual 2016
maintenance and inspection outages, or detection during the current operating season. The
project is proposed to occur during the 2017 planned maintenance outages to ensure
2017/2018 winter peak demands are met reliably.

1 2.0 Project Description

The primary scope of this project includes a refurbishment of the boiler air heaters servicing Units 1, 2, and 3. In addition, the expansion joints on the Units 1 and 2 combustion air ductwork to the boilers that are at the end of life will also be replaced. Completing this work during the annual 2017 unit outages, in conjunction with the boiler cleaning that will be completed as part of the 2017 boiler maintenance work, should allow Units 1 and 2 to be placed back in service at 170 MW prior to the winter period of 2017-2018, and will also ensure the continued reliable operation of Unit 3.

9

10 The project includes procurement, installation, and commissioning of new air heater baskets, 11 sector plates, seals, and ductwork expansion joints. Refurbishments and replacements will 12 occur concurrently with the planned annual maintenance outages scheduled to commence in 13 April 2017 for Unit 3, June 2017 for Unit 1, and August 2017 for Unit 2. The duration of work is 14 approximately four (4) weeks per unit.

15

A secondary aspect of this project is comprised of the replacement of end of life equipment, including valve and piping replacements, turbine speed cable replacements, No.6 fuel oil steam heat tracing replacements, and DC lube oil pump motor starter replacements. Completing this work will reduce risk of unplanned equipment failure for equipment that is at or near end of life, thereby improving plant availability and unit capacity until interconnection.

21

22 3.0 Justification

23 **3.1** Boiler Air Heater Refurbishment and Expansion Joint Replacement

Holyrood is critical to Hydro providing reliable electrical service to customers. The primary
aspect of this project is to refurbish the boiler air heaters serving Units 1, 2, and 3 and replace
the leaking boiler combustion air ductwork expansion joints serving Units 1 and 2. Units 1 and 2
have a Maximum Continuous Rating¹ of 170 MW and are currently de-rated to 135 MW. Air

¹ Maximum load that the generation unit can sustain under operation

leakage on the boiler air heaters and expansion joints is contributing to the de-rating on Units 1
 and 2.

3

4 During the annual Unit 1 and 2 outages in the summer and fall of 2016, Hydro contracted 5 Howden North America Inc. (Howden), the boiler air heater original equipment manufacturer 6 (OEM), to complete condition assessments on the air heaters to determine the cause of the de-7 rating on Units 1 and 2 and make recommendations for future work necessary to ensure 8 reliable operation. Condition assessment reports were submitted to Hydro in October 2016 (the 9 Howden Reports). As referenced in Appendices A and B, the Howden Reports indicate that the 10 Units 1 and 2 boiler air heater radial and circumferential seal clearances are excessive due to corrosion resulting in air leakage and recommend a replacement of the seals and sector plates 11 12 to restore the clearances to OEM specifications. Air heater excessive seal clearance is shown in 13 Figure 1.

14

To correct this air leakage, it is necessary to install liners on the sector plates and replace the rotor seals. A cross section of a boiler air heater is shown in Figure 12. There was insufficient time in 2016 to action the work that was identified by Howden.

Excessive Seal Clearance Contributing to Air Leakage

Figure 1: Boiler Air Heater Excessive Seal Clearance

- 1 Similarly, during the 2016 annual outages, Hydro contracted Babcock and Wilcox (B&W), the
- 2 boiler service provider, to complete a condition assessment on the combustion air ductwork
- 3 serving Units 1, 2, and 3 and the Unit 3 boiler air heaters. The B&W Condition Assessment
- 4 indicates that many of the ductwork expansion joints serving Units 1 and 2 have developed
- 5 holes due to erosion and corrosion and require replacement. Photos of leaking expansion joints
- 6 are shown in Figures 2, 3, and 4.

Leaking Expansion Joint

Figure 2: Boiler Ductwork Expansion Joint

Figure 3: Boiler Ductwork Expansion Joint

Figure 4: Boiler Ductwork Expansion Joint

The B&W Condition Assessment also indicates that the Unit 3 boiler air heater baskets have 1 2 reached the end of life and require replacement. The baskets are extremely thin due to erosion 3 and corrosion and are dropping out of position on the rotor. Deteriorated baskets can increase 4 fouling and block air flow during operation causing air heater leakage and a reduction in combustion air flow to the boiler. Air pressure drop across the boiler air heaters has been a 5 6 recent concern on Unit 3, indicating replacement is required this summer. Unit 3 has a 7 Maximum Continuous Rating of 150 MW. B&W indicates that if replacement of the air heater 8 baskets is delayed, there is a risk of de-rating Unit 3 due to boiler air flow issues. Photos of 9 deteriorated Unit 3 air heater baskets are shown in Figures 5, 6, and 7.

Figure 5: Unit 3 Boiler Air Heater Rotor

Figure 6: Deteriorated Unit 3 Air Heater Baskets

Corroded Baskets Dropping Out of Position

Figure 7: Deteriorated Unit 3 Air Heater Baskets

1 Boiler air heaters and combustion air ductwork expansion joints must be functional to sustain

2 operation and output of the generating unit. Based on the condition assessments completed by

3 Howden and B&W, refurbishment of boiler air heaters and replacement of expansion joints

4 must be completed to ensure reliability and availability of the capacity of Units 1, 2, and 3.

5

6 3.2 Equipment Replacement

Hydro is continuously evaluating asset condition and forecast requirements. As an outcome of
this evaluation, Hydro is proposing an additional aspect of this project, which is to replace
various pieces of critical equipment, such as valves, cooling water piping, turbine speed cable
replacements, No.6 fuel oil steam heat tracing replacements, and DC lube oil pump motor
starter replacements. These replacements are required due to age, and condition assessment
that indicates the various components could be at risk of failure. Addressing these risks now will
mitigate the risk of unplanned outages in winter of 2017-2018.

14

15 Replacements will include the following:

- 16 1. <u>Valves</u>. Hydro has identified a number of valves related to steam, boiler feed water and
- 17 compressed air systems that have reached the end of life and require replacement.
- 18 These valves are either leaking process fluid externally or are passing through internally
- and can no longer provide isolations. A photo of a typical valve leaking condensate isshown in Figure 8.

- Figure 8: Leaking Valve
- 2. Turbine condenser cooling water piping. The Holyrood steam turbine condensers 1 2 utilize sea water to condense steam when it exits the low pressure stage of the turbine. Cooling water enters the condenser on the bottom side via two (2) 36 inch diameter 3 steel pipes, condenses the turbine steam, and exits on the sides of the condenser. The 4 5 Unit 1 condenser cooling water outlet piping has reached the end of life due to corrosion and requires replacement. A recent thickness survey indicates that he piping 6 7 has less than 1/3 of the original wall thickness remaining. In recent years, Hydro has installed welded patch plates to repair leaks at a number of locations. Replacement is 8 9 now necessary to ensure reliable operation. Condenser cooling water outlet piping is 10 shown in Figure 9.

Welded Patch Plates

Figure 9: Condenser Cooling Water Piping

3. Turbine main steam supply flange. The Units 1 and 2 turbines main steam supply 1 2 consists of 10 inch diameter high pressure piping which has a flanged connection prior 3 to entering the turbines. In 2016, Hydro experienced three forced outages on Unit 2 as 4 a result of high pressure steam leaks at this location caused by flange gasket failures. These forced outages occurred in November and December at the beginning of the 5 6 peak operating season. Flange mating surfaces have degraded over time leading to re-7 occurring high pressure steam leaks which required an outage to address. Hydro is proposing to remove the flanges at each location and install welded pipes to improve 8 9 safety and reliability. 10 11 4. Units 1 and 2 DC lubrication oil pump motor starter. The DC lubrication oil pump is a 12 back-up pump that provides lubrication oil to the turbine and generator bearings in the 13 event of a failure of the main AC lubrication oil pumps. The existing motor starter, while functional, is now considered obsolete and requires replacement. Hydro is 14 15 proposing to replace these starters during the 2017 unit maintenance outages. Newfoundland and Labrador Hydro 10

5. No.6 fuel oil steam heat tracing replacements. The fuel supply for Holyrood includes a 1 2 tank farm consisting of four (4) 250,000 barrel No.6 fuel oil storage tanks located to the 3 South of the plant. No.6 fuel oil is gravity fed to the plant from the tank farm via an 18 inch pipe. Steam heat tracing is used to heat the No.6 fuel oil to enable it to flow to the 4 plant and consists of a ¾ inch steam pipe that is attached to the 18 inch pipe line and 5 6 wrapped in external insulation. Many sections of the steam tracing have degraded over 7 time from erosion and corrosion and now require replacement. Hydro is proposing a condition assessment of the steam heat tracing system and to complete targeted 8 9 replacements on sections that have reached the end of life. A section of failed heat 10 tracing is shown in Figure 10.

Figure 10: Steam Heat Tracing Failure

6. <u>Turbine speed probes and cables.</u> The turbine control system receives the turbine speed via magnetic speed sensors to represent the turbine speed in RPM. The magnetic sensors are mounted next to a multi-tooth gear attached to the turbine shaft. A total of 6 sensors are used, 3 for control and 3 for trip protection. These sensors and associated interconnection cables are normally partially immersed in lubrication oil during operation as the assembly is in close proximity to the turning gear set. Turbine generator speed probes and cables are shown in Figure 11.

Figure 11: Turbine Speed Control System

1In 2016, there have been a number of occurrences where the turbine control system2has lost signal from the speed sensors, delaying the start-up of Unit 2 following the3annual outage and a smaller maintenance outage. Exposure to oil degrades electrical4equipment over time and reduces reliability. Oil attacks the insulating jacket on cables5making it ineffective in its primary role as an insulator and reduces the signal strength6of the cable and sensor. Accurate and reliable turbine speed signals are necessary for7safe and reliable governing of the turbine generator during operation. Hydro is

proposing to replace the six magnetic speed sensor cables on both Units 1 and 2 during
 the 2017 annual maintenance outage.

3

While Hydro has currently identified equipment for immediate replacement, it is possible that
additional components may require replacement during the annual outages. Hydro proposes
that any item, material in dollar value, that meets capitalization criteria, that is required to be
replaced to mitigate an unplanned outage in the coming winter season, and that can be
replaced within this project's contingency, would be replaced and communicated to the Board
via the year end Capital Expenditures Variance report.

10

11 3.3 Existing System

12 **3.3.1 Boiler Air Heaters**

13 The four main components of each generating unit are the boiler, steam turbine, generator and

14 transformer. The main components of a boiler are forced draft fans, fuel combustion system,

15 air heaters, ductwork, water wall tubes, boiler drum, superheater, reheater, and economizer. A

16 cross section of the boiler air heater is shown in Figure 12.

Figure 12: Boiler Air Heater

The primary function of the boiler air heater is to recover heat from the flue gas to heat the 1 2 incoming boiler combustion air for improved efficiency. There are two (2) air heaters per boiler. 3 Each air heater contains a cylindrical rotor that turns slowly on a vertical axis. The rotor is 4 equipped with two layers of baskets or heating elements. The rotor passes through the flue gas 5 duct and through the incoming combustion air duct and the baskets pick up heat from the flue 6 gas and transfer this heat to the combustion air. Sector plates separate the gas and air ducts. 7 Seals on the rotor minimize the amount of air or gas that bypasses the rotor and also minimizes 8 the amount of air that leaks directly across the air heater, bypassing the boiler completely. Air 9 heater leakage, largely due to long term erosion and corrosion of the sector plates, has been 10 confirmed to be a significant problem and a major contributor to the de-ratings of Units 1 and 11 2.

12

13 3.3.2 Expansion Joints

Expansion joints are a component of the ductwork that conveys combustion air to the boiler. The primary function of expansion joints is to allow the ductwork to expand and contract during operation and prevent cracking. Many of the ductwork expansion joints serving Unit 1 and Unit 2 have developed holes due to erosion and corrosion and require replacement. A complete failure of expansion joints during operation will result in forced unplanned unit outages. Boiler ductwork expansions joint are shown in Figures 13 and 14. Additional photos of deteriorated expansion joints are shown in Figures 2, 3, and 4.

21

22 Boiler air heater refurbishments and expansion joint replacements will be completed during the

23 scheduled 2017 unit maintenance outages, pending Board approval.

Figure 13: Boiler Ductwork Expansion Joint (1)

Corroded Expansion Joint

Figure 14: Boiler Ductwork Expansion Joint (2)

1 3.4 Operating Experience

- 2 **3.4.1** Boiler Air Heaters and Expansion Joints
- 3 Originally rated for 150 MW, Units 1 and 2 were placed in service in 1969 and 1970,
- 4 respectively, and were upgraded to 170 MW in 1988 and 1989. The Original Equipment

Manufacturer (OEM) for both units is General Electric (GE). Unit 3 is rated for 150 MW and was 1 2 placed in service in 1979. The OEM for the Unit 3 boiler is B&W and the OEM for the Unit 3 3 turbine and generator is Hitachi. As of February 2017, Unit 1 has an approximate total 4 operating hours in excess of 202,182, Unit 2 has an approximate total operating hours in excess 5 of 193,690, and Unit 3 has an approximate total operating hours in excess of 155,008. Boiler 6 tuning was completed in the Fall of 2016 when units could reach high loading ranges without 7 overly risking island electrical system stability in the event of a trip. Units 1 and 2 are currently 8 de-rated to 135 MW as a result of boiler air flow issues.

9

10 3.4.2 Equipment Replacement

Following many years of operation, it is normal for various equipment components, especially
high pressure piping components, to deteriorate. A listing of plant systems and equipment
requiring replacement is provided above in Section 3.3.2. Replacement of aged or faulty
equipment mitigates risk of operational issues during high demand periods.

15

16 **3.5 Reliability Performance**

In March of 2017, a forced outage occurred on Unit 1 as a result of cooling water leaks on the
East and West air heater bearings. During the 2017 operating season, the available capacity of
Units 1, 2, and 3 has gradually reduced to 135 MW as a result of boiler air flow issues. There
have been no forced outages caused by failure of boiler combustion air ductwork expansion
joints.

22

Other equipment to be addressed in this project can impact safety, efficiency, availability
and/or reliability of the plant. Hydro has recently experienced a number of forced outages on
Units 1 and 2 as a result of high pressure steam leaks at the main steam piping flanged
connection to each turbine as a result of gasket failures. In 2016, Hydro experienced three (3)
forced outages on Unit 2 as a result of high pressure steam leaks at this location. These forced
outages occurred in November and December at the beginning of the peak operating season.
Also in 2016, there have been three (3) occurrences where the turbine control system has lost

- 1 signal from the speed sensors, delaying the start-up of Unit 2 following the annual outage and
- 2 smaller maintenance outages. In addition, a loss of turbine speed signal to the control system
- 3 during operation will result in forced unit outages.
- 4
- 5 Table 1 shows the outage statistics for Holyrood as well as the latest average statistics as
- 6 reported by the Canadian Electrical Association (CEA).
- 7
- 8

Table 1: Holyrood Thermal Generation Unit Performance

Five Year Average 2011-2015			
Unit	Incapability Factor ² (%)	DAFOR ³ (%)	Failure Rate ⁴
Holyrood Unit 1	43.19	28.78	10.57
Holyrood Unit 2	32.48	10.61	10.64
Holyrood Unit 3	38.91	9.36	5.17
Holyrood Plant	39.19	17.37	8.94
CEA (2011-2015)	26.65	13.75	8.55

9 3.6 Legislative or Regulatory Requirements

- 10 The physical condition of a steam boiler and power piping operating in the province of
- 11 Newfoundland and Labrador is governed by the Boiler, Pressure Vessel, and Compressed Gas
- 12 Regulation under the provincial Public Safety Act. Operating a boiler or external power piping
- 13 with a leak is not contrary to this legislation; however, a provincial boiler inspector is notified
- 14 when a leak is identified.
- 15

16 3.7 Safety Performance

- 17 Safety non-compliance is not an issue for boiler air heater and combustion air ductwork
- 18 expansion joint air leakage. Boiler air heater leakage is internal to the air heater where

² Incapability Factor is defined as unit unavailable time. It is the ratio of the unit's available time to the total number of unit hours.

³ DAFOR is defined as De-rated Adjusted Forced Outage Rate and is the ratio of equivalent forced outage time to equivalent forced outage time plus the total equivalent operating time.

⁴ Failure Rate is defined as the rate at which the generating unit encounters a forced outage. It is calculated by dividing the number of transitions from an Operating state to a forced outage by the total operating time.

1	combustion air bypasses the rotor and mixes with the boiler flue gas and is discharged to the
2	exhaust stack. If a failure of a combustion air ductwork expansion was to occur, it would be
3	localized and the boiler system can be shut down in a controlled, safe manner.
4	
5	Hydro notes that, for the reliability improvement work, there are direct safety related
6	outcomes for some projects:
7	1. Units 1 and 2 turbine main steam piping flange. Failure of a gasket on the main steam
8	pipe flange connection on the turbine can be very dangerous for employees in the
9	vicinity, which is an Occupational Health and Safety (OHS) risk for employees.
10	2. Valve replacements. Failure to replace valves that are leaking process fluid can be very
11	dangerous for employees in the vicinity, which is also an Occupational Health and
12	Safety (OHS) risk for employees.
13	
14	3.8 Environmental Performance
15	There are no environmental issues related to this project.
16	
17	3.9 Vendor Recommendations
18	Internal inspection and service reports were completed by B&W and Howden in 2016. These
19	reports recommend refurbishing the boiler air heaters serving Units 1, 2, and 3 and replacing
20	Units 1 and 2 leaking boiler combustion air ductwork expansion joints that are at the end of life
21	to correct boiler air flow issues. Hydro has accepted and is proposing to follow these
22	recommendations.
23	
24	3.10 Maintenance or Support Arrangements
25	From 1997 until 2011, Alstom provided Hydro with maintenance services for the three boilers.
26	As of April 2012, B&W has been providing Hydro with maintenance services for all three boilers.
27	Hydro also maintains a turbine generator service contract with GE and other various service
28	contracts for balance of plant equipment.

1 **3.11** Maintenance History

- 2 The maintenance history for the Units 1, 2, and 3 boiler air heaters and expansion joints is
- 3 shown in Tables 2, 3, and 4:

Year	Preventative	Corrective	Total Maintenance	
	Maintenance (\$000)	Maintenance (\$000)	(\$000)	
2016	45.6	71	116.6	
2015	8.5	19.2	27.2	
2014	28.8	65	93.8	
2013	15.6	25	40.6	
2012	12	26	38	

 Table 2: Unit 1 Boiler Air Heaters and Expansion Joints Maintenance History

Table 3: Unit 2 Boiler Air Heaters and Expansion Joint Maintenance History

Year	Preventative	Corrective	Total Maintenance	
	Maintenance (\$000)	Maintenance (\$000)	(\$000)	
2016	45.6	8.2	53.8	
2015	37.8	71.5	109.3	
2014	28.8	82.5	111.3	
2013	15.6	184	199.6	
2012	22.0	35.2	57.2	

Year	Preventative	Corrective	Total Maintenance	
	Maintenance (\$000)	Maintenance (\$000)	(\$000)	
2016	45.0	5.0	50	
2015	26.4	8.5	34.9	
2014	16.8	11.0	27.8	
2013	22.8	5.0	27.8	
2012	14	12.4	26.4	

Table 4: Unit 3 Boiler Air Heaters Maintenance History

1 The equipment proposed for replacement is a number of small to medium size plant

components. Much of the maintenance history at the plant is not captured and reportable by
small component size. Hydro does note that all components are maintained as part of various
comprehensive plant preventative maintenance work orders where corrective maintenance is
also completed as required.

6

7 3.12 Anticipated Useful Life

8 The refurbished boiler air heaters and replacement expansion joints for Units 1, 2, and 3 and 9 the majority of the replaced equipment proposed is expected to last up to end of steam, and 10 until a determination has been made for when Units 1, 2, and 3 are no longer required for 11 generation.

12

13 **4.0 Development of Alternatives**

14 The alternative to completing this project is to not refurbish or replace any equipment,

15 including the boiler air heaters and expansion joints, and instead replace upon failure. This

16 would increase risk of additional unit deratings and unplanned outages during peak operating

17 season.

Hydro has experienced a de-rating on Units 1 and 2 throughout much of the winter of 2017, 1 2 and believes it is appropriate to refurbish boiler air heaters and replace expansion joints on 3 Units 1 and 2 in advance of the next winter. It is also appropriate to refurbish the boiler air heaters on Unit 3 to avoid a de-rating due to air flow issues. Further, Hydro has evaluated 4 5 various system components and identified components for replacement to mitigate a risk of 6 interrupted service of Holyrood in the next high demand operating season. Hydro deems it is 7 necessary to proceed with this work in 2017 in order to increase the generation output on Units 8 1 and 2 by an estimated 10 MW per unit and avoid a de-rating on Unit 3.

9

10 Delaying this work until 2018 and including it as part of the 2018 Capital Budget Application is

11 not considered to be an acceptable alternative considering the existing de-ratings of Units 1

12 and 2 and the forecast demand for the winter of 2017/2018. Further, the risk would remain of

13 operational and availability issues if the additional equipment identified is not replaced.

14

15 5.0 Execution

16 This project is expected to cost approximately \$2,610,000 and will take eight months to 17 complete.

18

19 5.1 Budget Estimate

Project Cost:(\$ x1,000)	<u>2017</u>	<u>2018</u>	Beyond	<u>Total</u>
Material Supply	39.6	0.0	0.0	39.6
Labour	438.9	0.0	0.0	438.9
Consultant	0.0	0.0	0.0	0.0
Contract Work	1,660.5	0.0	0.0	1,660.5
Other Direct Costs	5.0	0.0	0.0	5.0
Interest and Escalation	37.2	0.0	0.0	37.2
Contingency	428.8	0.0	0.0	428.8
TOTAL	2,610.0	0.0	0.0	2,610.0

Table 5: Project Budget Estimate

Newfoundland and Labrador Hydro

1 5.2 Project Schedule

	Activity	Start Date	End Date
Planning	- Identify and order materials	April 2017	April 2017
	- Issue PO to contractor		
Procurement	- Materials arrive on site	April 2017	June 2017
Construction	- Refurbish boiler air heaters	May 2017	Oct. 2017
	- Replace expansion joints		
	- Equipment replacements		
Commissioning	- Verify air heater seal clearances	June 2017	Oct. 2017
	 Complete unit load testing 		
	- NDE new pipe welds		
	- Set-up turbine speed probes		
	- DC lube oil pump motor starter checks		
	- Valve set-up		
Closeout	- Project close out and hand over documents	Nov. 2017	Dec. 2017

Table 6: Project Milestones

2 Hydro notes that Units 1, 2, and 3 will undergo annual maintenance outages in 2017, as per

3 normal maintenance cycles. The work described in this proposal would take place concurrently

4 with the maintenance outages already planned.

5

6 **6.0 Conclusion**

7 Holyrood is an essential part of the Island Interconnected System and Hydro requires that

8 Holyrood continue to operate reliably to provide capacity and energy to Island Interconnected

9 System.

10

11 Hydro is proposing to improve the reliability at Holyrood by refurbishing and replacing critical

12 systems and equipment that are necessary for the safe and relation operation of the plant. This

- 13 includes:
- 14 1. Boiler air flow and heat transfer equipment refurbishments and replacements including
- 15 boiler air heaters and expansion joints;
- 16 2. Piping, valves, and heat tracing replacements related to boiler feed water, steam, and
- 17 cooling water systems; and

- Turbine and generator lubrication and control system replacements including DC lube
 oil, pump motor starters, and speed probes and cables.
- 3
- 4 Completing this work will reduce the risk of unplanned equipment failures, thereby improving
- 5 plant availability and unit capacity until interconnection. If approved, this work will occur
- 6 concurrently with the planned annual maintenance outage schedules for the Units in 2017.
- 7
- 8 The estimated capital cost of this project is \$2,610,000.

Appendix A

Howden Inspection Report (Unit 1 Preheaters)

Inspection Report

Unit 1 Air Preheaters

Two size 21.5-VIRX-40" Air Heaters

Appendix A Page 2 of 7 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

Date: 10/05/2016

Location: NALCOR Energy Newfoundland Labrador Hydro HOLYROOD STATION 1 Thermal Plant Road Canada, NL A0A 2R0

Equipment: Unit 1 Airheaters Customer PO No.: TPX284373 Contact: OEM Contract Number: 0828-1201 Invoice No.: Phone:

Purpose of Visit:

The purpose of the visit was to inspect the air heaters on Unit 1 and provide recommended repairs for the FUTURE outage.

Equipment:

NOTE: Representative photographs of the conditions described in the body of this report are for illustrative purposes only. Observations apply to both air heaters unless otherwise specified.

Observations:

Rotor Structure:

The internal inspection began with the hot end sides of both units. Assisting with the inspection was **Sector 1**, Field Service Engineer with B&W. First impressions of the rotor structure showed that the unit is in good condition as far as structural integrity. No stay plate weld cracks were found. Hardware fasteners were in good condition with the exception of the mounting angles for the circumferential seals. These use square headed bolts for holding the backing bar to the seal and approximately 4 were found missing. Previous repairs here were noticed and appeared to be serviceable and holding.

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 3 of 8

Appendix A Page 3 of 7 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

The structure inspection on the cold ends showed that the structure was in good condition for its age and would not require any major repairs. These rotors have short cold element that is side loaded through the rotor housing via an access door. The element sits on grating that is also loaded through these doors. This grating was noticed to be welded to the sides of the diaphragms.

This is incorrect. The support grating is supported on the sides with blocks

that are welded to the diaphragms. The grating is allowed to float freely without concern that it will fall out of the structure. The basketed element is also free to move on this grating during thermal expansion and deformation. Welding the grating to the diaphragms

restricts this expansion and can cause stress in the rotor structure.

During any outage that maybe scheduled next year, these welds should be removed and allow the rotor to be free from restriction on expansion and to conform to thermal deformation design and allowing proper sealing.

The grating itself is in good condition and can be reused if new cold end element is installed.

The #1 East rotor was checked for level and found to be **service**" out of level across its diameter. It must be noted however, that the level that was used was also found to not be calibrated and was **service** out of calibration. Time constraints and other work going on for the West unit prevented a level check from being conducted.

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 4 of 8

Appendix A Page 4 of 7 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

It is not known if this is a condition due to the guide bearing housing out of center or if it is a worn guide bearing. Consultations with **sectors** included the need for inspecting the guide bearing before making any adjustments to the guide bearing housing.

Rotor Housing:

The housing was found to be in good condition with the exception of the cold end sector plate sealing surfaces that are built integral with the main structures. The sealing surface that is at the gas to air junction of the rotation of the rotor is suffering the most damage from corrosion. This is the hottest part of the rotor during operation and corrosion and/or erosion from this environment is usually where damage is found. The sector plate sealing surfaces at the air to gas junction one hundred and eighty degrees on the other side is in great shape with no damage found.

This damage can be measured for a possible liner that can be applied to the sealing surface to bring dimensions back within specs. However, due to the rotor on 1 east being found out of level, these measurements could not be taken due to time constraints.

As mentioned earlier, the levelness of the rotor must be verified before any liner calculations can be made. Once the rotor is leveled, a pair of fingertabs can be attached to the outboard of the diaphragms and a sweep can be made to determine the thickness and size of any liners that may be needed. Anything with variations larger than **meds** to be relined to be brought back to within tolerance and help with leakage and bypass.

The seal ring that runs the circumference of the housing for the circumferential seals to operate on was found to be serviceable. There is some wear in places around the structure, but it is not known if that is a result from the rotor being eccentric with the housing or that the support angles for the seals needing replaced. A run out of the seal bars/rings was not done. It will be recommended in this report that the circumferential seals and their support angles be replaced in the seal change out.

Rotor Element:

The condition of the hot end element is very good and can be expected to be serviceable for the next three years. The cold end element is showing thinning and some fracturing especially at the inboard center of the rotors. A change out of this element is recommended at the next outage. As mentioned earlier, the support grating needs to be freed from weld restriction when this element is replaced.

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 5 of 8

Appendix A Page 5 of 7 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

Although the hot end element is in good condition, it is suffering bypass from the basket to diaphragm gaps. This may be a result from smaller than normal baskets or to an oversize expanded compartment. Due to the lack of excessive heat evidence, it is suspected that the baskets are just small. The baskets can be used in this condition without problems if the gaps are just stripped with material to keep the flow from going around the basket.

These gaps exist at several locations including at the diaphragms and any of the stay plates. Any gaps larger than """ should be considered for closing off. Flow goes through here and is not absorbed by the element and contributes to a loss of return. Material that is stripped here must be tack welded to either the sides of the diaphragms or the baskets, but not from basket to basket or

to both diaphragms and baskets. The goal is to force the flow through the element without restricting the thermal movement and expansion of the rotor or the element. Tabbing these gaps can improve the gas outlet and air outlet temperatures by 6°F to 8°F.

Sealing Systems:

The rotor post seals, radial seals, circumferential seals need to be replaced on all sides of both rotors. They are thinned and breaking on the hot ends and thinned and corroded away on the cold ends.

Some spot replacements of rotor post seals were ongoing during the inspection. The trunnion air seals were found to be serviceable and can be reused with new packing and new rotor post seals.

The cold end radial seals on both units are gapped at the rotor post to the point of being ineffective. This is due to corrosion and damage from contact with sootblowing media that may actually be within specs and will work fine with new radial seals. It was found on the #1 west cold that the radial seals are installed on the wrong side of the diaphragms. Some

Appendix A Page 6 of 7 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

other seals and holding strips were also found installed incorrectly. It was also noticed that some of the outer seal tabs were installed incorrectly in relation to the outboard radial seal.

The end plates at the rotor post will also need to be replaced during these repairs and new lifting apparatus for changing out the support bearings is recommended. The ideal time to replace the lifting apparatus is when the cold end element is out of the air heater.

• Once the old seals are all removed, the rotor structures can be more effectively inspected for any repairs and be marked up with highly visible paint. Removing the cold end baskets and the inboard "A" baskets can also allow for a more efficient inspection where repairs can be done readily.

Rotor Drive:

An inspection of the wear on the pin rack was done and no issues were found. The wear is minimal and is not into the softness of the pins. No open inspection of the pinion gear was done. Drive reducers were checked for oil levels and any noticeable leaks. All appeared normal without exception.

Rotor Bearings:

No open bearing inspections were done during this short trip. All oil levels were checked and the oil appeared clean and was at the full marks according to their dipsticks.

As mentioned earlier, the guide bearing on the #1 East rotor must be checked for wear and may have to be replaced. The rotor is out of level and the bearing may be letting the rotor lean to the heavy side. Preparations should be made for doing the same on the West unit in the event of finding that the rotor there is also out of level.

Sootblowers:

The cold end sootblowers are used on a daily basis. The lances were found to be covered in ask buildup and is suspected to be from the water wash in the beginning of the outage. The lances must be checked before closing up the cold end ducts to be sure they are clear and serviceable. Nozzles were checked and found to be **sure** or farther from the element and is of no concern as long as blowing pressures are maintained at the proper levels as outlined in the OEM manuals.

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 7 of 8

Appendix A Page 7 of 7 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

Summary:

- The rotors of unit# 1 are in good condition for their age. They can be repaired to be within spec design with normal maintenance as outlined in the OEM manuals.
- No major issues were found that would prevent the air preheaters from operating when repairs are made.

Recommendations:

- Check the 1East guide bearing for wear and replace if required.
- All rotating rotor seals are in need of replacement and proper setting.
- The support angles for the circumferential seals need to be replaced and set properly.
- All rotor bearings should be visibly inspected for wear and damage and replaced if necessary.
- Both rotors must be checked for level and repositioned if required. This must be done before any sealing surface repairs or seal installation is conducted.
- The cold end element must be replaced. The element is thinned and fractured
- The hot element is still serviceable, but needs to be stripped with basket seals to prevent bypass.
- The end plates need to be replaced during these repairs.
- The lifting apparatus for changing out the support bearings needs to be replaced.

Repair and replacement of the seals and sealing systems and leveling of the rotors will result reducing the fan pumping power and improved unit efficiency.

Striping the hot end baskets will reduce air and gas bypassing the element. This will result in thermal performance improvement of the unit.

Sincerely,

Field Service Technical Advisor Howden North America, Inc.

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 8 of 8

Appendix B

Howden Inspection Report (Unit 2 Preheaters)

Appendix B Page 1 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

FIELD SERVICE

Babcock & Wilcox Power NALCOR Energy Newfoundland Labrador Hydro Holyrood Generating Plant

<u>Unit #2 APH</u> LAP# 21.5 VIRX 40 Ljungström:

Unit #2 EAST LAP 21.5 #0828 VIRX 40 #1202-2 Unit #2 WEST LAP 21.5 #0828 VIRX 40 #1202-1

Inspection Dates: July19, 2016 Technical Advisor:

NOTE: Representative photographs of the conditions described in the body of this report are for illustrative purposes only. Observations apply to both air heaters unless otherwise specified.

Unit #2 EAST LAP 21.5 #0828 VIRX 40 #1202-2 Unit #2 WEST LAP 21.5 #0828 VIRX 40 #1202-1

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 2 of 14

Appendix B Page 2 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

Work Summary

July 19, 2006

• Unit #2 East and West air pre heaters were already under full permit and scheduled repairs were in progress with 2 weeks remaining in the outage. The APH's were isolated under permit and the rotors locked (rotor welded to the housing cross braces at multiple points) securely in position to remove the top guide bearing housing for annual cleaning. Soot blower inspections as per annual preventative maintenance was in progress.

#2 East APH

- The East APH drive assembly had looseness in the coupling. The electric motor had a damaged keyway; the motor was removed and sent away to have the shaft and keyway repaired.
- Cold end soot blower lance nozzles were in poor condition. The lance tube repair was in progress.
- The top guide bearing housing replaced with the spare unit. This is a normal routine to change the housings for cleaning out scale and debris from the cooling jacket.

#2 West APH

- Cold end soot blower lance nozzles were in poor condition. The lance tube repair was in progress.
- A quick visual inspection of top guide bearing revealed the trunnion shaft lock plate bolts sheared off. The damage to the inner center pipe from an unsecure rotating trunnion shaft rubbing against it. The damage parts have left metal debris in the bearing housing.
- A local Machine shop will repair the housing and the bearing assembly. The trunnion shaft taper to the bearing assembly requires a proper fit.
- Rotating the West APH during my visit will not happen due to the conditions of the guide bearing.
 - Rotor level check and bearing housing level check are required when all the repaired parts returned to site and installed. Instructions and methods discussed with the site contacts.
 - Radial seal clearances with the rotor stationary locked in position on the hot and cold prior to the bearing housing repairs.

Appendix B Page 3 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

<u>Rotor</u>

<u>Baskets</u>

- The East and West APH's have 2 rows of baskets. The HE overall basket depth is and CE basket overall depth is . They have been recently replaced within the past 4 years. The CE grating and support bars are in good serviceable condition.
- There are gaps between the HE baskets to stay plates and baskets to diaphragms.
 <u>Recommend:</u> Gaps larger than a should be covered with a sealing strip to maintain flow thru the basket elements.

Element

• The HE and CE element appear to be good serviceable condition. No signs of severe pluggage. No signs of thinning or fracturing. With the soot blowers lance tubes being replace this outage this will aid in keeping the CE basket element in good condition.

Hot end elements

Enameled Cold end elements

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 4 of 14

Appendix B Page 4 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

Hot end sector plates

• The East and West APH's HE sector plates are in good serviceable condition. There are signs of minor wear grooves.

HE Air to Gas

Cold end sector plates

- The East and West APH's CE sector plates are equally in poor condition. There is a significant discrepancy in the reduced thickness of the GAS to Air sector plate. The original thick sector plate is reduced to approximately thick in the middle and outboard portion of the sector plate.
- Radial seals set to the appropriate cold seal settings to the higher AIR to GAS sector plate there is a substantial gap and direct leakage path across the sector plate to the gas side. There was ash build up on top of the sector plates indicating that the CE radial seals are not making contact with the sector plate.

Recommend: Replace the GAS to AIR sector plate in both the East and West APH's.

East APH CE GAS to AIR

West APH CE GAS to AIR

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 5 of 14

Appendix B Page 5 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

Circumferential sealing ring

Air side

• The Circumferential seal ring on the air side HE and CE has no signs of contact wear on the East and West APH's. The East APH HE gap of was relatively uniform and concentric to the rotor. The West APH is indicating the same discrepancy.

<u>Recommend</u>: Align the air side circumferential seal ring on HE and CE end concentric to the rotor to maintain proper gap on both APH's.

Gas side

• The Circumferential sealing ring on the HE and CE has signs of contact wear on the East and West APH's. There are some excessive gaps up to

Gas HE Cir seal ring wear up to

Gas CE Circ seal ring no wear

CE GAS circ seal gap of

CE GAS circ seal ring eroded at sector plates

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 6 of 14

Appendix B Page 6 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

<u>Seals</u>

Radial seals

• The radial seals on both the east and west APH are in satisfactory condition. There are signs of bent, misalignment, overlapping and gaps with the HE and CE radial seals on both East and West APH's.

Abutting radial seals have some gaps

Over lapping radial seals

Circumferential seals

- The circumferential seals and holding strips were installed incorrectly. Signs that the Diaphragms have been relieved allowing the holding strip to pass thru. The holding strips should start/stop at the intersecting diaphragm to rotor shell. This is a direct leakage path.
- The cold seal settings on the HE and CE exceed the recommend settings. <u>Recommend:</u> Replace circumferential seals and holding strips and hardware.

Holding strip passes thru diaphragm

Missing sealing strips

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 7 of 14

Appendix B Page 7 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

Post seals

• The hot end post seal have been previously repaired and showing signs of wear. <u>Recommend:</u> Replace the HE and CE post seals in both the East and West APH's

East HE post seal

East CE post seal

West HE post seal

West CE post seal

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 8 of 14

Appendix B Page 8 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

Seal setting chart

Radial seals

- Historically it has been a common practice to set the HE seals and the CE seals which exceeds the recommended clearances and not as per the OEM chart.
- The seal gaps as found during this outage. The radial seal clearances are relatively the same on the East and West APH's. The gaps on the GAS to AIR sector plate are the largest.

 Overall there are no signs of contact wear on the HE and CE air side circumferential sealing ring. There is up to deep wear groove in the HE and CE sealing rings on the gas sides on both east and west units.

<u>Recommend</u>: Replace all seals during the next scheduled outage. Set them using a seal setting bar.

Drive unit

- The East and West drive unit has a Falk gear drive model AP with a gear ratio of auxiliary air motor per APH. The units have new pinion gear shrouds installed and were not removed during this visit. Therefore no pin rack to pinion gear throat clearances were taken. The oil levels are very low and this was brought to the site contacts attention.
- The West APH was not available to rotate because of the top guide bearing was removed.
- The East APH was rotated by means of an Aluminum bar because the drive motor was removed and sent out to have the shaft keyway repaired.
- The up shaft positive air supply shaft seal appears to be good on the West APH and the EAST APH seal will need attention during the next scheduled outage.

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 9 of 14

Appendix B Page 9 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

Leaking seal

Low oil level

Support bearings

• The bottom support bearings appear to be in good service condition. The oil levels are indicating at the full line on both the East and West APH's.

Guide bearings

• The top guide bearings annually have the bearing housing removed to clean out scale and debris from the cooling jacket to prevent overheating during normal operating conditions. The East was removed and replace with the spare to perform a rotor level check. The debris and scale gets cleaned out and they perform a pressure test annually to ensure there are no leaks.

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 10 of 14

Appendix B Page 10 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

Access port for cleaning

Center pipe burred

• The West APH top cover was removed for a quick inspection. The three "" bolts that hold the trunnion shaft locking plate were sheared off and the trunnion bearing sleeve adapter was not secured to the end of the trunnion shaft.

Trunnion shaft

Locking Plate

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 11 of 14

Appendix B Page 11 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

End of trunnion shaft and guide bearing

Before

After

<u>Recommend</u>: To replace the top guide bearing and trunnion shaft and bearing assembly trunnion sleeve assembly and locking plate. Address the HE trunnion positive air shaft seal.

Pin rack and pinion gear

• The Pin Rack has normal wear on the contact surfaces. The pin rack to pinion gear clearance was not measured at this time.

Auxiliary devices

Water wash manifolds

• The east and west APH's have water wash manifolds in the HE gas inlet and outlet. They are in good condition.

Soot blowers

• The east and west APH's have retractable soot blowers on the CE gas outlets. The lance tubes were found in poor condition during this outage.

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 12 of 14

Appendix B Page 12 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

• Both soot blowers were in a complete overhaul state and new lance tubes to be replaced this outage.

Steam coils

• The East and West APH's have steam coils in the CE Air inlet side. They appear dirty and fouled and a good majority of the coils exterior fins are bent over. This may have an impact on the air flow, temperature and pressure entering the APH.

<u>Recommend</u>: To clean and replace damaged steam coils. Ensure there is decking installed above the steam coils to minimize foot traffic on top of the coils that damage the outer fins.

East APH Steam coils

West APH steam coils

Conclusions / Recommendations / Summary:

- Align the air side circumferential sealing ring on both APH's HE and CE ends.
- Reestablish the CE circumferential sealing ring at the OB sections of the sector plates/housing.
- Replace all of the post, radial and circumferential seals during the next scheduled outage.
- Replace the CE gas to air sector plates on both APH's.
- Replace the West APH guide bearing, trunnion shaft and bearing trunnion assembly and shaft seal.
- Seal off the excessive gaps between the Baskets and baskets and stay plates/diaphragms.
- Clean and replace the steam coils as necessary.
- Replace the West APH top guide bearing and trunnion shaft and bearing assembly sleeve and locking plate and associated hardware.
- Repair or replace the HE trunnion positive air shaft seal on both APH's
- Repair/clean the steam coils.

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 13 of 14

Appendix B Page 13 of 13 Howden North America Inc. 2475 George Urban Blvd. Suite 120 Depew, NY 14043 Tel: 716-817-6900 Fax: 716-817-6905 www.howden.com

Sincerely,

Field Service Technical Advisor Howden North America, Inc.

This document and any inclusive copyrights, which contain information of a proprietary nature, are vested in Howden North America Inc. The content of this document may not be used for purposes other than that for which it has been supplied and may not be reproduced, either wholly or in part, in any way whatsoever, nor may it be used by, or its content divulged to any other person whatsoever without the prior written permission of Howden North America Inc. Form BXF 80.03 Rev. H 1/27/15 PN Page 14 of 14

IN THE MATTER OF the Electrical Power Control Act, RSNL 1994, Chapter E-5.1 (the EPCA) and the Public Utilities Act, RSNL 1990, Chapter P-47 (the Act), and regulations thereunder;

AND IN THE MATTER OF an Application by Newfoundland and Labrador Hydro for approval to undertake Reliability Improvements at the Holyrood Thermal Generating Station pursuant to Subsection 41(3) of the Act.

AFFIDAVIT

I, Jennifer Williams, Professional Engineer, of St. John's in the Province of Newfoundland and

Labrador, make oath and say as follows:

- 1. I am the VP, Production Operations of Newfoundland and Labrador Hydro, the Applicant named in the attached Application.
- 2. I have read and understand the foregoing Application.
- 3. I have personal knowledge of the facts contained therein, except where otherwise indicated, and they are true to the best of my knowledge, information and belief.

SWORN at St. John's in the Province of Newfoundland and Labrador this <u>10</u> day of April, 2017, before me:

Traces Reell

Barrister - Newfoundland and Labrador

Jennifer Williams

1	(DRAFT ORDER)			
2	NEWFOUNDLAND AND LABRADOR			
3	BOARD OF COMMISSIONERS OF PUBLIC UTILITIES			
4				
5	AN ORDER OF THE BOARD			
6				
7	NO. P.U(2017)			
8				
9	IN THE MATTER OF the Electrical Power			
10	<i>Control Act</i> , KSNL 1994, Chapter E-5.1 (the EPCA) and the <i>Bublic Utilities Act</i> , BSNL 1000			
11 12	Chapter D 47 (the Act) and regulations thereunder:			
12	Chapter F-47 (the Act), and regulations thereunder,			
14				
15	AND IN THE MATTER OF an Application			
16	by Newfoundland and Labrador Hydro			
17	for approval to undertake Reliability Improvements			
18	at the Holyrood Thermal Generating			
19	Station pursuant to Subsection 41(3) of the Act.			
20				
21				
22	WHEREAS Newfoundland and Labrador Hydro (Hydro) is a corporation continued and existing			
23	under the <i>Hydro Corporation Act</i> , 2007, is a public utility within the meaning of the <i>Act</i> , and is			
24	subject to the provisions of the <i>Electrical Power Control Act</i> , 1994; and			
25				
26 27	WHEREAS Section 41(3) of the <i>Act</i> requires that a public utility not proceed with the			
21	construction, purchase of lease of improvements of additions to its property where: a_{1} the east of construction or purchase is in evenes of \$50,000, or			
20 20	a) the cost of the lease is in excess of \$5,000 in a year of the lease			
2) 30	without prior approval of the Board: and			
31	while the prover of the board, and			
32	WHEREAS in Order No. P.U. 45(2016) the Board approved Hydro's 2017 Capital Budget in			
33	the amount of \$271,265,600; and			
34				
35	WHEREAS in Order No. P.U. 5(2017) the Board approved supplementary 2017 capital			
36	expenditures in the amount of \$3,045,000 to construct a distribution feeder at the Bottom Waters			
37	Terminal Station; and			
38				
39	WHEREAS in Order No. P.U. 7(2017) the Board approved supplemental 2017 capital			
40	expenditures in the amount of \$3,168,944 for: (i) the sublease of two 230 kV transmission lines			
41	that run from Churchill Falls to the Twin Falls generating plant site; (ii) the sublease of two 230			
42 42	k v transmission lines that run from the 1 win Falls generating plant site to the wabush Terminal Station: (iii) the losse of electrical equipment situated in the Churchill Falls Switchword, and (iv)			
43 44	station; (iii) the lease of electrical equipment situated in the University Falls Switchyard; and (iv) the purchase of spare parts and inventory associated with the Webuch Terminal Station, the			
44	the purchase of spare parts and inventory associated with the wabush reminal Station, the			

1 2	Churchill Falls Switchyard and the transmission lines to acquire two 230 kV transmission lines serving Labrador West; and			
3		1 1 /	·/ 1	
4	where the amount of \$2,585,200 for 2017 and \$327,300 for 2018 to replace equipment			
5				
07	and complete a level 2 condition assessment at the wabush	Terminal Statio	n, and	
/ Q	WHEDEAS on April 12 2017 Hydro applied to the Roard	for approval to	proceed with	
0	reliability improvements at the Holyrood Thermal Generating Station, including the			
10	refurbishment or replacement of the boiler heat transfer equipment air flow equipment and			
10	other system components that are at the end of life, and			
12	other system components that are at the end of me, and			
13	WHEREAS the capital cost of the project is estimated to be	e \$2.610.000: an	d	
14			-	
15	WHEREAS the Board is satisfied that the reliability impro-	vements at the H	Iolyrood Thermal	
16	Generating Station are necessary to allow Hydro to provide	service and faci	lities which are	
17	reasonably safe and adequate and just and reasonable.			
18				
19	IT IS THEREFORE ORDERED THAT:			
20				
21	1. The proposed capital expenditure for reliability improvements at the Holyrood Thermal Generating Station, including the refurbishment or replacement of the boiler heat transfer equipment, air flow equipment, and other system components that are at the end of life,			
22				
23				
24	at an estimated capital cost of \$2,610,000 is approve	ed.		
25				
26	2. Hydro shall pay all expenses of the Board arising fro	om this Applicat	10 n .	
$\frac{21}{20}$	DATED at St. John's Newfoundland and Labradan this	day of	2017	
28	DATED at St. John's, Newfoundland and Labrador, this	day of	, 2017.	
29 20				
30				
32				
33				
34				
35				
36				
37				
38				
39				